Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes.
نویسندگان
چکیده
Transport processes and spectroscopic phenomena in light harvesting proteins depend sensitively on the characteristics of electron-phonon couplings. Decoherence imposed by low-frequency nuclear motion generally suppresses the delocalization of electronic states, whereas the Franck-Condon progressions of high-frequency intramolecular modes underpin a hierarchy of vibronic Coulombic interactions between pigments. This Article investigates the impact of vibronic couplings on the electronic structures and relaxation mechanisms of two cyanobacterial light-harvesting proteins, allophycocyanin (APC) and C-phycocyanin (CPC). Both APC and CPC possess three pairs of pigments (i.e., dimers) that undergo electronic relaxation on the subpicosecond time scale. Electronic relaxation is ~10 times faster in APC than in CPC despite the nearly identical structures of their pigment dimers. We suggest that the distinct behaviors of these closely related proteins are understood on the same footing only in a basis of joint electronic-nuclear states (i.e., vibronic excitons). A vibronic exciton model predicts well-defined rate enhancements in APC at realistic values of the site reorganization energies, whereas a purely electronic exciton model points to faster dynamics in CPC. Calculated exciton sizes (i.e., participation ratios) show that wave function delocalization underlies the rate enhancement predicted by the vibronic exciton model. Strong vibronic coupling and heterogeneity in the pigment sites are the key ingredients of the vibronic delocalization mechanism. In contrast, commonly employed purely electronic exciton models see heterogeneity as only a localizing influence. This work raises the possibility that similar vibronic effects, which are often neglected, may generally have a significant influence on energy transport in molecular aggregates and photosynthetic complexes.
منابع مشابه
Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photosynthetic Complexes
A vibronic-exciton model is applied to investigate the recently proposed mechanism of enhancement of coherent oscillations due to mixing of electronic and nuclear degrees of freedom. We study a dimer system to elucidate the role of resonance coupling, site energies, vibrational frequency and energy disorder in the enhancement of vibronic-exciton and ground-state vibrational coherences, and to i...
متن کاملQuantum scattering model of energy transfer in photosynthetic complexes
We develop a quantum scattering model to describe the exciton transport through the FennaMatthews-Olson(FMO) complex. It is found that the exciton transport involved the optimal quantum coherence is more efficient than that involved classical behavior alone. Furthermore, we also find that the quantum resonance condition is easier to be fulfilled in multiple pathways than that in one pathway. We...
متن کاملNon-Markovian quantum jumps in excitonic energy transfer.
We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beat...
متن کاملDoes Coherence Enhance Transport in Photosynthesis?
Recent observations of coherence in photosynthetic complexes have led to the question of whether quantum effects can occur in vivo, not under femtosecond laser pulses but in incoherent sunlight and at steady state, and, if so, whether the coherence explains the high exciton transfer efficiency. We introduce the distinction between state coherence and process coherence and show that although som...
متن کاملQuantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes
Open quantum system approaches are widely used in the description of physical, chemical and biological systems. A famous example is electronic excitation transfer in the initial stage of photosynthesis, where harvested energy is transferred with remarkably high efficiency to a reaction center. This transport is affected by the motion of a structured vibrational environment, which makes simulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 115 6 شماره
صفحات -
تاریخ انتشار 2011